Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Pediatr ; 10: 834771, 2022.
Article in English | MEDLINE | ID: covidwho-1887117

ABSTRACT

Background: The COVID-19 pandemic continues worldwide with fluctuating case numbers in the United States. This pandemic has affected every segment of the population with more recent hospitalizations in the pediatric population. Vertical transmission of COVID-19 is uncommon, but reports show that there are thrombotic, vascular, and inflammatory changes in the placenta to which neonates are prenatally exposed. Individuals exposed in utero to influenza during the 1918 pandemic had increased risk for heart disease, kidney disease, diabetes, stomach disease and hypertension. Early exposure of COVID-19 during fetal life may lead to altered gene expression with potential long-term consequences. Objective: To determine if gene expression is altered in cord blood cells from term neonates who were exposed to COVID-19 during pregnancy and to identify potential gene pathways impacted by maternal COVID-19. Methods: Cord blood was collected from 16 term neonates (8 exposed to COVID-19 during pregnancy and 8 controls without exposure to COVID-19). Genome-wide gene expression screening was performed using Human Clariom S gene chips on total RNA extracted from cord blood cells. Results: We identified 510 differentially expressed genes (374 genes up-regulated, 136 genes down-regulated, fold change ≥1.5, p-value ≤ 0.05) in cord blood cells associated with exposure to COVID-19 during pregnancy. Ingenuity Pathway Analysis identified important canonical pathways associated with diseases such as cardiovascular disease, hematological disease, embryonic cancer and cellular development. Tox functions related to cardiotoxicity, hepatotoxicity and nephrotoxicity were also altered after exposure to COVID-19 during pregnancy. Conclusions: Exposure to COVID-19 during pregnancy induces differential gene expression in cord blood cells. The differentially expressed genes may potentially contribute to cardiac, hepatic, renal and immunological disorders in offspring exposed to COVID-19 during pregnancy. These findings lead to a further understanding of the effects of COVID-19 exposure at an early stage of life and its potential long-term consequences as well as therapeutic targets.

2.
Biomed Pharmacother ; 144: 112291, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1466070

ABSTRACT

BACKGROUND: Oxytocin (OXT), a neuropeptide involved in mammal reproductive and prosocial behaviors, has been reported to interact with various stressor-provoked neurobiological changes, including neuroendocrine, neurotransmitter, and inflammatory processes. In view of disturbances in psychosocial relationships due to social isolation and physical distancing measures amid the COVID-19 pandemic, being one of the triggering factors for the recent rise in depression and anxiety, OXT is a potential candidate for a new antidepressant. METHODS: In this present study, we have aimed to investigate the effects of oral administration of Rosmarinus officinalis extract (RE), extracted from distillation residue of rosemary essential oil, on central OXT level in the context of other stress biomarkers and neurotransmitter levels in mice models. Tail suspension test (TST) and elevated plus maze test (EPMT) following LPS injection were employed to assess depressive- and anxiety-like behavior in mice, respectively. FINDINGS: Pretreatment with RE for seven days significantly improved behavior in TST and EPMT. Whole-genome microarray analysis reveals that RE significantly reversed TST stress-induced alterations in gene expressions related to oxytocinergic and neurotransmitter pathways and inflammatory processes. In both models, RE significantly increased central Oxt and Oxtr expressions, as well as OXT protein levels. RE also significantly attenuated stress-induced changes in serum corticosterone, brain and serum BDNF levels, and brain neurotransmitters levels in both models. INTERPRETATION: Altogether, our study is the first to report antidepressant- and anxiolytic-like activities of RE through modulating oxytocinergic system in mice brain and thus highlights the prospects of RE in the treatment of depressive disorders of psychosocial nature.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/therapeutic use , Oxytocin/metabolism , Plant Extracts/therapeutic use , Receptors, Oxytocin/metabolism , Rosmarinus , Animals , Anti-Anxiety Agents/isolation & purification , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/isolation & purification , Antidepressive Agents/pharmacology , Anxiety/drug therapy , Anxiety/metabolism , Brain/drug effects , Brain/metabolism , Depression/drug therapy , Depression/metabolism , Dose-Response Relationship, Drug , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred ICR , Oxytocin/agonists , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Receptors, Oxytocin/agonists
SELECTION OF CITATIONS
SEARCH DETAIL